

Management of Neuroendocrine Tumors

Professor
Barbro Eriksson
Department of Endocrine
Oncology
ENETS Centre of Excellence
Uppsala University Hospital

Diagnostic Challenges in NET

- Heterogeneous group of tumours
- Wide variety of clinical presentations
- Late presentation
- Different terminology and classifications
- Histologic diagnosis may be difficult

NET Vary by Primary Tumour Site

 Generally characterized by their ability to produce peptides that may lead to associated syndromes^{1,2}

Historically classified based on

embryonic origin³

Foregut tumours

Midgut tumours

- Hindgut tumours

 Today, primary tumour location is recommended for NET classification⁴

"Karzinoide", Oberndorfer 1907

Clinical syndromes associated with endocrine pancreatic tumors

Functioning (70 → 30%)

insulinoma

gastrinoma

VIP-oma

glucagonoma

somatostatinoma

ACTH-oma, GRF-oma

calcitonin-, serotonin-

PTH-rp producing

1-3 per million (17%)

0.5-3 per million (15%)

0.05-0.2 per million (2%)

0.01-0.1 per million (1%)

<10%

Non-functioning (30-70%)

0.2-2 per million

Classification of NET

- Functional versus non-functional
- Classification by site of origin
 - Nearly identical characteristics on routine histologic evaluation, but different responses to therapeutic agents
- Classification by tumour stage: TNM
 - AJCC
 - ENETS
- Histologic classification
 - Well differentiated, poorly differentiated
 - Tumours with a high grade (grade 3), a mitotic count >20 per10 high powered fields, or a Ki-67 proliferation index of >20% represent highly aggressive malignancies
- Molecular Classification
 - MEN 1 & 2, Tuberosis Sclerosis, Von Hippel Lindau disease

Incidence of NET is Increasing*

^{*}Approximate 5-fold increase between 1975 and 2004
Approximate 7-fold increase also evident in Norwegian registry

SEER = Surveillance, Epidemiology, and End Results (for malignant NET)

Yao JC, et al. J Clin Oncol. 2008;26:3063-3072.

NET are the Second Most Prevalent Type of Gastrointestinal Malignancy

Prevalence in SEER Database

GEP = gastroenteropancreatic

¹National Cancer Institute. SEER Cancer Statistics Review, 1975-2004. http://seer.cancer.gov/csr/1975_2004; ²Modlin IM, Lye KD, Kidd M. *Cancer*. 2003;97(4):934-959.

33-Month Median Survival for Patients with Metastatic NET

Tumours with well- and moderately differentiated histology¹

	Media	Median survival		
Stage	Month	95% CI		
Localized Regional Distant	223	208-238		
	111	104-118		
	33	31-35		

- □ SEER: 5-year survival, SI-NET: 54%; pNET 27%
- □ Survival rates are 3 times higher in specialized centres in Europe and US

CI = confidence interval

Correlation of Primary Tumour Site with Survival

Known prognostic factors include:

- Location of primary tumour
- Extent of disease
- Tumour stage
- Degree of differentiation/ proliferative index (PI)
- Tumour grade
- Patient age
- Performance status

Distant Metastases

WHO Classifications of Neuroendocrine Neoplasms of the GEP System

WHO 2000	WHO 2010	
Well-differentiated endocrine tumour (WDET) Well-differentiated endocrine carcinoma (WDEC)	Neuroendocrine tumours Grade 1 Grade 2	
Poorly differentiated endocrine carinoma/small-cell carcinoma (PDEC)	Neuroendocrine carcinoma Grade 3	
Mixed exocrine-endocrine carcinoma (MEEC)	Mixed adenoneuroendocrine carcinoma (MANEC)	
Tumour-like lesions (TLL)	Hyperplastic and preneoplastic lesions	

ENETS/AJCC Grading System

ENET/AJCC				
Grade	Mitotic count (10 HPF)*	Ki-67 index (%)**		
G1	<2	≤2		
G2	2-20	3-20		
G3	>20	>20		

^{*10} HPF (high power field) = 2 mm², at least 40 fields (at 40x magnification) evaluated in areas of highest mitotic density.

^{**} MIB1 antibody; % of 2,000 tumour cells in areas of highest nuclear labeling.

¹Rindi G, et al. Virchows Arch. 2006;449:395-401. ²Rindi G, et al. Virchows Arch. 2007;451:757-762.

³American Joint Committee On Cancer. AJCC Cancer Staging System. 7th ed.

ENETS/AJCC TNM Staging Systems

ENET/AJCC Classification Criteria – GI NET					
Stage includes tumour location, size, lymph node involvement/distant metastasis					
Stage I	T1	N0	MO		
Stage IIa	T2	N0	MO		
Stage IIb	Т3	N0	MO		
Stage IIIa	T4	N0	MO		
Stage IIIb	Any T	N1	MO		
Stage IV	Any T	Any N	M1		

ENETS = European Neuroendocrine Tumour Society AJCC = American Joint Committee on Cancer

¹Rindi G, et al. *Virchows Arch.* 2006;449:395-401. ²Rindi G, et al. *Virchows Arch.* 2007;451:757-762.

³American Joint Committee On Cancer. AJCC Cancer Staging System. 7th ed.

Correlation of Tumour Grade and Cumulative Survival (ENETS Grading Proposal)

¹ENETS grading system.

 $^{^2}$ 10 HPF = 2 mm 2 at least 40 fields (40 × magnification) evaluated in areas of highest mitotic density.

³Percentage of 2,000 tumour cells in areas of highest nuclear labeling with MIB1 antibody.

Biomarkers in NET

CgA is the best available biomarker for diagnosis of NET

Elevated CgA may correlate with tumour progression

CgA is elevated 80% to 100% of the time

- NSE is also expressed in NET
 - Not as commonly used as CgA
 - Also elevated in pNET and poorly differentiated NEC
- 5-HIAA reflects serotonin levels
 - Elevated serotonin levels over time lead to comorbidities such as cardiac disease
- Specific markers for different syndromes
- New biomarkers in NET are needed to provide better diagnostic and prognostic information

CgA = Chromogranin A; 5-HIAA = 5-hydroxy-3-indoleacetic acid, 5-HT = serotonin, NSE = neuron-specific enolase, VIP = vasoactive intestinal peptide; SSTR = somatostatin receptor

CgA raised for a median of 30 mo before recurrence was confirmed by imaging

Welin, et al, 2009: P-CgA first marker to indicate recurrence

Radiological Techniques

CT/MRI/US - diagnosis and

follow-up

Endoscopic ultrasonography

Intraoperative ultrasonography

Rarely angiography

60-95% of metastases

50-70% of primary tumours

75-90%

>90%

Functional techniques

- OctreoScan® (somatostatin receptor scintigraphy [SRS])
- Metaiodobenzylguanidine (MIBG)scintigraphy
- □ Positron emission tomography (PET) (¹¹C-5-HTP, ¹8F-DOPA, ⁶⁸Ga-DOTAoctreotide, ⁶⁸Ga-exendin 4)
- For staging and localization

PET/CT with ¹¹C-5-HTP improves morphological accuracy

Hofmann et al, Eur J Nucl Med 2001: Biokinetics and imaging with somatostatin PET radioligand ⁶⁸Ga-DOTATOC: preliminary data

PET/CT with ⁶⁸Ga-DOTA-octreotide

Methods for identification of primary and metastatic GEP NET

Identification of primary and metastatic tumours (%)

Current Challenges in Treating Patients with Advanced NET

- More than half of NET patients are diagnosed with advanced disease
- Advanced NET are incurable and most patients will succumb to the disease
- There is a need for new therapeutic options for patients with advanced NET

Therapeutic Options for Patients with Advanced NET

Surgery

curative or ablative

Debulking

- radiofrequency ablation (RFA)
- embolisation/chemo-/radio

Medical therapy

- chemotherapy
- biological treatment:
 - somatostatin analogs
 - alpha interferon
 - m-TOR inhibitors
 - VEGF-R inhibitors
 - other TKI's

Irradiation

- external (bone, brain metastases)
- tumour targeted, radioactive treatment (⁹⁰Y-DOTATOC,
 ¹⁷⁷Lu-DOTATE)

Chemotherapy for NET

- Streptozotocin, a chemotherapeutic agent, approved in some countries (US, France) for pancreatic NET (pNET), however, it is not effective in the treatment of GI-NET
- Most recent reports of outcome with STZ/Dox or STZ/5-FU describe PR (WHO, RECIST) of 36-39% with median duration of 9.3, PFS 18 months, SD 50%; first-line in G2
- Toxicity; gastro-intestinal (grade 1-2), renal (mainly grades 1-2, grade 3: 8%, grade 4: 0%) with appropriate monitoring and dose adjustments

Chemotherapy: Temozolomide

Ekeblad; Clin Cancer Res 2007

- 36 patients (35 foregut: 12 EPT, 12 bronchial 7 thymus)
- median 2.4 prior antitumour medical therapies
- RR 14% (40% in low MGMT)
- TTP 7 months

Kulke; ASCO 2006 abstract 4044

- + bevacizumab
- 34 patients (18 EPT, 16 carcinoids)
- 12 prior chemo
- EPT 24% PR, carcinoids 0%
- PFS 8.6 months

Kulke; Clin Cancer Res 2009

correlation MGMT-deficiency and response

Strosberg; Cancer 2011

- + capecitabine
- 30 patients with EPT
- first line
- PR 21/30 (70%)

Biotherapy in NET: Interferon Studies

- 27 studies, 679 patients
- 3 randomised trials
- biochemical responses 50%, symptomatic 60%, tumour response 10%
- side-effects constitute a problem; mainly given in combination with somatostatin analogs in low-proliferative tumours

Octreotide LAR Provides Effective Symptom Relief

¹Rubin J, et al. *J Clin Oncol*.1999;17:600-606. ²Anthony L, et al. *Curr Med Res Opin.* 2009;25:2989-2999.

PROMID: Phase III Randomised, Double-Blind, Placebo-Controlled Study

Patients:

- Well-differentiated midgut NETs
- Treatment naïve
- Locally inoperable or metastasised
 N = 85

Primary endpoint:

Median time to tumour progression

Secondary endpoints:

Objective tumour response rate

Treatment until

CT/MRI-

documented

tumour

progression or

death

- Symptom control
- Overall survival

Patient Characteristics

	Octreotide LAR n = 42	Placebo n = 43
Median age, years (range)	63.5 (38-79)	61.0 (39-82)
Sex male (%) female (%)	47.6 52.4	53.5 46.5
Time since diagnosis, months (range)	7.5 (0.8-271.2)	3.3 (0.8-109.4)
Karnofsky score ≤80 (%) >80 (%)	16.7 83.3	11.6 88.4
Carcinoid syndrome* (%)	40.5	37.2
Resection of primary (%)	69.1	62.8
Hepatic tumour load 0% 0% - 10% 10% - 25% 25% - 50% >50%	16.7 59.5 7.1 11.9 4.8	11.6 62.8 4.7 9.3 11.6
Octreoscan positive (%)	76.2	72.1
Ki-67 up to 2% (%)	97.6	93.0
CgA elevated (%)	61.9	69.8

^{*} Not requiring octreotide for symptom control

Octreotide LAR 30 mg Significantly Prolongs Time to Tumour Progression

66% reduction in the risk of tumour progression HR = 0.34; 95% CI: 0.20-0.59; P = .000072

Based on the conservative ITT analysis TTP = time to progression

[177Lu-DOTA0, Tyr3] Octreotate

310 patients

Dose 600-800 m Ci (22.2 to 29.6 GBq)

PR 30% MR 16% higher remission rates –
 higher uptake on Octreoscan grade 3-4

SD 35%

PD 20%

Performance status KPS >70

Median time to progression: 40 mo

Serious adverse events:

MDS (3 patients), acute leukemia, liver toxicity (2 patients)

higher response rates but shorter duration in EPT

Rationale for the Use of Angiogenesis Inhibitors in NET

- NET are highly vascularised and express VEGF and VEGF-R¹
- Angiogenesis inhibitors that target VEGF have been shown to have clinical activity in NET³

New Antiangiogenic Agents

- VEGF antibodies
 - Bevacizumab
- Inhibition of PDGF + VEGF receptors
 - Sunitinib, sorafenib, vandetanib
- Inhibition of mTOR which regulates HIF-1 impacting the transcription of VEGF-A
 - Everolimus
- ("Old": IFN-α, somatostatin analogs)

Sunitinib vs Placebo in Advanced pNET

- Phase III randomised, placebo-controlled, double-blind trial
- Trial terminated after unplanned early analysis

Well differentiated advanced pNET patients (N = 171 enrolled / 340 planned)

- Disease progression in past 12 mo
- Not amenable to curative treatment

Primary Endpoint:

• PFS

Statistical significance required nominal critical z value ≥3.8809

Raymond E, et al. *N Engl J Med*. 2011;364:501-513.

Secondary Endpoints:

- OS
- ORR
- TTR
- Duration of response
- Safety
- Patient-reported outcomes

^{*} With best supportive care Somatostatin analogues were permitted

Progression-Free Survival*

^{*} Local review

Raymond E, et al. N Engl J Med. 2011;364:501-513.

Adverse Events: Sunitinib

- Most frequently reported all-grade AEs with sunitinib were diarrhea (59%), nausea (45%), asthenia (34%), vomiting (34%), and fatigue (33%)
- Grade 3/4 AEs (≥ 5%) in the sunitinib arm included neutropenia (12%), hypertension (10%), leukopenia (6%), PPE* (6%), asthenia (5%), diarrhea (5%), fatigue (5%), and abdominal pain (5%)

Raymond E, Dahan L, Raoul J-L, et al. N Engl J Med. 2011;364:501-513.

^{*} Palmar-plantar erythro-dysesthesia

Rationale for mTOR Inhibition in NET

- mTOR is a central regulator of growth, proliferation, cellular metabolism, and angiogenesis¹⁻³
- mTOR pathway activation is observed with genetic cancer syndromes associated with pNET⁴
 - TSC2, NF1, VHL
- Everolimus has demonstrated antitumour activity in pNET in phase II and phase III studies⁵⁻⁷

TSC2 = tuberous sclerosis 2; NF1 = neurofibromatosis type I; VHL = von Hippel-Lindau disease

¹O Reilly T, et al. *Transl Oncol.* 2010;3(2):65-79. ²Meric-Bernstam F, et al. *J Clin Oncol.* 2009;27:2278-2287. ³Faivre S, et al. *Nat Rev Drug Disc.* 2006;5:671-688. ⁴Yao JC, et al. Pancreatic Endocrine Tumours. In: DeVita VT, Lawrence TS, Rosenberg SA, eds. *Cancer: Principles & Practice of Oncology.* 8th Edition. Philadelphia, PA: Lippincott Williams & Wilkins; 2008:1702-1721. ⁵Yao JC, et al. *J Clin Oncol.* 2008;26:4311-4318. ⁶Yao JC, et al. *J Clin Oncol.* 2010;28:69-76. ⁷Yao J, et al. *NEJM* 2011; 364:514-23.

RADIANT-3 Study Design: Phase III Double-Blind, Placebo-Controlled Trial

Patients with progressive advanced pNET, N=410

- Advanced low- or intermediate-grade pNET
- Radiologic progression ≤12 months
- Prior antitumor therapy allowed
- WHO PS ≤2

Stratified by:

- WHO PS
- Prior chemotherapy

Multiphasic CT or MRI performed every 12 weeks

Primary Endpoint:

PFS

Statistical boundary ≤.025

Secondary Endpoints:

- OS
- ORR
- Biomarkers
- Safety
- PK

Randomisation: August 2007-May 2009
* Concurrent somatostatin analogues allowed

Yao J, et al. N Engl J Med. 2011;364:514-523.

Progression-Free Survival

148 placebo patients crossed over to everolimus at the time of progression

P value obtained from stratified 1-sided log-rank test Hazard ratio is obtained from stratified unadjusted Cox model

¹Yao J, et al. *N Engl J Med.* 2011;364:514-523. 2. Yao JC, et al. 35th ESMO Congress; October 8-12, 2010; Milan, Italy; Abstract LBA9.

Adverse Events: Everolimus

- Most frequently reported all-grade treatmentrelated AEs with everolimus were stomatitis (64%), rash (49%), diarrhea (34%), fatigue (31%), and infections (23%)
- Grade 3/4 AEs (≥ 5%) in the everolimus arm included stomatitis (7%), anemia (6%), and hyperglycemia (5%)

RADIANT-2 Study Design: Phase III, Double-Blind, Placebo-Controlled Trial

Patients with advanced NET and a history of secretory symptoms (N = 429)

- Advanced low- or intermediategrade NET
- Radiologic progression ≤12 months
- History of secretory symptoms (flushing, diarrhea)
- Prior antitumour therapy allowed
- WHO PS ≤2

Multiphasic CT or MRI performed every 12 weeks

Primary Endpoint:

• PFS

Statistical boundary = .0246

Enrollment January 2007-March 2008
PD = progressive disease; ORR = overall response rate; PK = pharmacokinetics

Secondary Endpoints:

- OS
- ORR
- Biomarkers
- Safety
- PK

Requirements for improved therapeutic outcome in NET

- Applied classification and grading, possibly refined (Rindi et al. 2012; Ki-67 >5%)
- Elucidation of molecular genetics and cell biology
- Identification of serum markers for early diagnosis and follow-up; age at diagnosis
- Improved molecular imaging (PET) for therapy evaluation
- Markers that serve as predictors of response (SST, MGMT, PTEN? hLMHI?
- Individualize treatment
- Establishment of Centres of Excellence with multidisciplinary specialized clinical teams for NET

PET = positron emission tomography.

NET Treatment Algorithm

Experimental protocols